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Abstract

With man One of the most critical tasks in automated face recognition technology is the extraction of facial

features from a facial images.

The most critical task in each face recognition (FR) technology, which contributes the most to the

success of particular FR products in particular applications and which is highly protected by industries

developing those products, is the extraction of facial features from a facial image. This report presents

the performance comparison of several publicly reported feature extraction algorithms for face recognition

in video. The evaluated features are Harris corner detection features, FAST (Features from Accelerated

Segment Test), GFTT (Good Features To Track), MSER (Maximally Stable Extremal Regions), and HOG

(Histograms of Oriented Gradients).

Keywords: video-surveillance, face recognition in video, instant face recognition, watch-list screening,

biometrics, reliability, performance evaluation

Community of Practice: Biometrics and Identity Management

Canada Safety and Security (CSSP) investment priorities:

1. Capability area: P1.6 – Border and critical infrastructure perimeter screening technologies/ protocols

for rapidly detecting and identifying threats.

2. Specific Objectives: O1 – Enhance efficient and comprehensive screening of people and cargo (iden-

tify threats as early as possible) so as to improve the free flow of legitimate goods and travellers across

borders, and to align/coordinate security systems for goods, cargo and baggage;

3. Cross-Cutting Objectives CO1 – Engage in rapid assessment, transition and deployment of innovative

technologies for public safety and security practitioners to achieve specific objectives;

4. Threats/Hazards F – Major trans-border criminal activity – e.g. smuggling people/ material
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Figure 1: A generic biometric system for video-based face recognition (from [10]).

1 Introduction

As highlighted in the first report of the PROVE-IT(FRiV) project [10], one of the most critical tasks in face

recognition technology is the extraction of facial features from a facial image (see Figure 1). As further

presented in the second report of the PROVE-IT(FRiV) project [9], there exist several open source libraries

that provide many of face recognition functions, including those required for facial feature extraction from

images. These libraries are intensively used by industry and academia for in-house development of face

recognition solutions.

This report presents a survey of several publicly reported feature extraction algorithms for face recog-

nition in video, in particular those available in the OpenCV library [13]. Comparative performance analysis

of these algorithms is performed for the purpose of identifying the best performing one among them.

The evaluated facial feature extraction algorithms (hereafter called simply “facial features”) are are

Harris corner detection features, FAST (Features from Accelerated Segment Test), GFTT (Good Features

To Track), MSER (Maximally Stable Extremal Regions), and HOG (Histograms of Oriented Gradients), of

which the last one is shown to perform the best.

The value of the report is seen not only in identifying the best performing publicly available facial

feature extraction algorithms but also in showing a simple and efficient way of conducting a preliminary

performance assessment or comparison of systems for face recognition in video (FRiV), using the NRC-

FRiV data-set and such Machine Learning (ML) techniques as “Random Forests” and Synthetic Minority

Oversampling Technique (SMOTE).
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The report is organized as follows. First, we describe the evaluation test-bed and procedure (Section 2).

Then we present the overview of the facial features, along with their performance according to the specified

evaluation metrics (Section 3). Once the best performing facial feature is identified on a simpler data-set

and ML algorithm, it is evaluated on a larger size still-image facial data-set using a higher complexity ML

technique (Section 4). Discussions on the insights learnt and future work conclude the report.

2 Test-bed and procedure for a small scale evaluation of FRiV

2.1 Facial video data-set

Prior to conducting large-scale evaluations that take a lot of time and memory resources it is useful to pre-

test the solutions to be evaluated at a small scale. Small scale evaluation is particularly helpful when it is

required to select a component or a parameter for the system to be later used in a large scale evalution,

instead of testing all components/parameters at a large scale.

The NRC-FRiV video database, described in [7] and which can be publicly downloaded from http:
//www.videorecognition.com/FRiV, offers convenient means to conduct such a small-scale pre-

assessment evaluation for face recognition in video. This database was specifically developed for fast

comparative small-scale testing of face recognition in video [?]. It contains eleven pairs of short low-

resolution mpeg1-encoded video clips, each showing a face of a computer user sitting in front of the monitor

exhibiting a wide range of facial expressions and orientations as captured by a USB webcam mounted on a

computer monitor.

The video capture size is 160 x 120 pixels. With a face occupying 1/4 to 1/8 of the image (in width),

this translates into a commonly observed situation on a TV screen when a face of an actor in a TV show

occupies 1/8 to 1/16 of the screen.

Figure 2.1 shows 22 video clips created for this dataset, two video sequences for each of eleven reg-

istered subjects. Each video clip is about 15 seconds long, has capture rate of 20 fps and is compressed

with the AVI Intel codec with bit-rate of 481 Kbps. Because of small resolution and high compression, thus

created video files of person faces are very small (less than 1Mb), which makes them comparable in size

to high-resolution face images such as those used e-Passports, and makes the entire video data-set easy to

download and process on a limited power computer.

2.2 Classification algorithm and metrics

All tests used 10x10-fold cross-validation and used Weka [11] to execute all evaluations. Two extra pro-

grams were created to extract faces features from those videos. The first one used a generic class that exists

in OpenCV (version 2.4.1), called FeatureDetector, which allowed the automatic extraction of Harris,

FAST, GFTT and MSER features. The second program adapted a class that the program traincascades
from OpenCV uses to extract HOG features.

All tests compared each face against all other faces in the data set. Since the number of detected faces

is not same in each video clip, the training data is unbalanced. This is rectified by applying the Synthetic
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Figure 2: Video clips in the NRC-FRiV data set (Figure reproduced from [7]). The numbers underneath

the images indicate the number of frames in a clip (the first number) and the number of those of them where

a face detected (the second number).

Minority Oversampling Technique (SMOTE) algorithm, which generates new instances for the smallest

class in the data set. Particularly, SMOTE is used to execute over-sampling of the minority class by creating
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artificial data with similar distance in the feature space [4]. The algorithm uses the K-nearest neighbors

for each example, and the distance is calculated according to the smallest distance along the n-dimensional

feature space.

To build face models from features, the Random Forest classification algorithm is used, implemented

using Weka. The Random Forest algorithm operates by constructing a multitude of decision trees at training

time and outputting the class that is the mode of the classes output by individual trees [3].

The performance of features is measured using Accuracy, which also commonly referred to as Recall.
The accuracy of a classifier on a given test set is defined as the percentage of test set tuples that are correctly

classified by the classifier.

The Variance in relation to the accuracy of the Random Forest was computed by using the 10-fold cross-

validation. In 10-fold cross-validation, the data set is broken in 10 exclusive sets or “folds’ [12]. Training

and testing are performed 10 times, which is why it is called 10x10-fold cross-validation. In each iteration,

one of the data partitions is used for testing and the rest for training. For classification, the accuracy estimate

is the overall number of correct classifications from the 10 iterations, divided by the total number of tuples

in the initial data [12].

In the next section, the performance of each facial feature is reported in terms of the Accuracy (Recall)

and Variation metrics computed for each of eleven target individuals in the NRC-FRiV dataset using the

ML techniques described above.

Dataset Recall Variance

HARRIS 01 SMOTE 83.55 2.34

HARRIS 02 SMOTE 91.52 1.31

HARRIS 03 SMOTE 81.47 2.08

HARRIS 04 SMOTE 88.03 1.79

HARRIS 05 SMOTE 85.52 2.15

HARRIS 06 SMOTE 85.84 1.94

HARRIS 07 SMOTE 82.82 1.82

HARRIS 08 SMOTE 86.39 1.61

HARRIS 09 SMOTE 88.07 1.98

HARRIS 10 SMOTE 81.47 1.95

HARRIS 11 SMOTE 85.32 1.91

Average 85.45

Table 1: Face recognition results for Harris features for each of eleven identities in the NRC-FRiV dataset.
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3 Comparative overview of facial features for face recognition

3.1 Harris

As explained in [14], “Harris features look at the average directional intensity change in a small window

around a putative interest point. This average intensity change can then be computed in all possible direc-

tions which leads to the definition of a corner as a point for which the average change is high in more than

one direction. From this definition, the Harris test is performed as follows. We first obtain the direction of

maximal average intensity change. Next, check if the average intensity change in the orthogonal direction

is also high. If it is the case, then we have a corner”. Results of simulation with Random Forest with Harris

features are presented in Table 1.

Dataset Recall Variance

FAST 10 SMOTE 84.92 2.14

FAST 11 SMOTE 89.80 2.00

FAST 1 SMOTE 88.63 1.89

FAST 2 SMOTE 93.23 1.25

FAST 3 SMOTE 88.54 1.84

FAST 4 SMOTE 90.07 1.34

FAST 5 SMOTE 89.93 1.65

FAST 6 SMOTE 89.49 1.87

FAST 7 SMOTE 87.53 1.67

FAST 8 SMOTE 89.82 1.78

FAST 9 SMOTE 89.89 1.80

Average 89.26

Table 2: Face recognition results for FAST features

3.2 FAST Features

Paper [14] describes the FAST (Features from Accelerated Segment Test) descriptor as follows: “(The)

definition is based on the image intensity around a putative feature point. The decision to accept a keypoint

is done by examining a circle of pixels centered at a candidate point. If an arc of contiguous points of length

greater than 3/4 of the circle perimeter is found in which all pixels significantly differ from the intensity of

the center point, then a keypoint is declared”. Table 2 presents the simulation results of Random Forest with

FAST features.
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Dataset Recall Variance

GFTT 01 SMOTE 84.51 2.11

GFTT 02 SMOTE 92.05 1.14

GFTT 03 SMOTE 82.05 2.03

GFTT 04 SMOTE 86.63 2.06

GFTT 05 SMOTE 85.98 1.65

GFTT 06 SMOTE 86.74 1.69

GFTT 07 SMOTE 82.58 1.92

GFTT 08 SMOTE 86.01 1.59

GFTT 09 SMOTE 87.88 1.54

GFTT 10 SMOTE 81.01 1.74

GFTT 11 SMOTE 85.09 2.08

Average 85.50

Table 3: Face recognition results for GFTT features

3.3 GFTT Features

As presented in [6], “Shi’s and Tomasis Good Features To Track (GFTT) is a feature detector that is based on

the Harris corner detector. The main improvement is that it finds corners that are good to track under affine

image transformations”. Table 3 presents the simulation results of Random Forest with GFTT features.

Dataset Recall Variance

MSER 01 SMOTE 89.76 6.71

MSER 02 SMOTE 98.51 2.67

MSER 03 SMOTE 88.28 7.05

MSER 05 SMOTE 82.07 6.85

MSER 06 SMOTE 92.04 6.27

MSER 07 SMOTE 84.58 6.65

MSER 08 SMOTE 93.70 5.68

MSER 10 SMOTE 87.90 6.46

Average 89.60

Table 4: Face recognition results for MSER features

3.4 MSER Features

Paper [16] gives an informal explanation of MSER (Maximally Stable Extremal Regions) as follows:

“Imagine all possible thresholdings of a gray-level image I. We will refer to the pixels below a thresh-
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old as ‘black’ and to those above or equal as ‘white’. If we were shown a movie of thresholded images

It , with frame t corresponding to threshold t, we would see first a white image. Subsequently black spots

corresponding to local intensity minima will appear and grow. At some point regions corresponding to two

local minima will merge. Finally, the last image will be black. The set of all connected components of

all frames of the movie is the set of all maximal regions; minimal regions could be obtained by inverting

the intensity of I and running the same process”. Table 4 presents the performance of Random Forest with

MSER features.

3.5 HOG Features

[22] presents a brief explanation about the HOG features, as follows: “(...) Each detection window is

divided into cells of size 8 x 8 pixels and each group of 2 x 2 cells is integrated into a block in a sliding

fashion, so blocks overlap with each other. Each cell consists of a 9-bin Histogram of Oriented Gradients

(HoG) and each block contains a concatenated vector of all its cells. Each block is thus represented by a

36-D feature vector that is normalized to an L2 unit length. Each 64x128 detection window is represented

by 7x15 blocks, giving a total of 3780 features per detection window”. Table 5 presents the recognition

accuracy results for HOG features.

Dataset Recall Variance

HOG 60 full 10 SMOTE 91.27 1.61

HOG 60 full 1 SMOTE 92.06 1.63

HOG 60 full 2 SMOTE 96.05 1.18

HOG 60 full 3 SMOTE 92.99 1.38

HOG 60 full 4 SMOTE 89.91 1.85

HOG 60 full 5 SMOTE 93.74 1.40

HOG 60 full 6 SMOTE 94.25 1.35

HOG 60 full 7 SMOTE 91.56 1.92

HOG 60 full 8 SMOTE 93.30 1.63

HOG 60 full 9 SMOTE 92.04 1.73

Average 92.72

Table 5: Face recognition results for HOG features.

3.6 Performance comparison results

The presented results are related to the selection of local facial features for face recognition in video-based

applications. Evaluated features are Harris, FAST, GFTT, MSER and HOG.

Harris, FAST, GFTT and MSER features have shown similar performance, but in the case of MSER

features there is an extra problem: this feature demands the size of the images to be bigger than the original
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size. In addition, MSER features generated the smallest amount of instances than other features, which

makes this feature not suitable for working with low quality images. GFTT and Harris features have very

close performance, because GFTT is derived from Harris. HOG features have shown the best recognition

results among tested features in terms of its recognition accuracy on a simple video data-set such as NRC-

FRiV with a simple ML algorithm such as Random Forest.

This research indicates that HOG features appear to offer a reasonably good solution combined with a

simple ML algorithm such as Random Forest. Other ML algorithms that could be tested to possibly further

improve the recognition performance include new types of Decision Trees such as Very Fast Decision Trees

(VFDT) [5]. These algorithms are design to build models from data-streams. VFDT has also the capability

to learn models very fast, which can be useful to learn new faces dynamically.

The main issue with the presented evaluation is related to the assumption that the recognition problem

is reduced to a binary classification problem. Real life scenarios demand the use of a database with many

faces. With the current assumption, there will be a requirement to train one classifier for each target subject,

which can be time consuming and demand more memory resources.

In the next section, the HOG features, which have been found to be the best performing using a simple

NRC-FRiV data-set with Random Forest ML algorithm, are applied to a data set of a large scale with other

ML algorithms.

4 Feature evaluation on a large-scale dataset with other ML algorithms

An implementation of the HOG features was done to evaluate their performance on a larger scale problem

with real life scenario. The ORL face database was used [18, 8] It consists of 400 still images, 10 images

per person for each of 40 enrolled persons, each captured with from different points of view and/or with

different face expressions. The size of each image is 92 x 112 at 8-bit grey levels.

The implementation was done using OpenCV version 2.4.3, which has a class that encapsulates all func-

tionalities of a face recognition process, called FaceRecognition. All new face recognition algorithms

need to inherit their functionalies from this class.

The first step was to implement a C++ class, which was called HOG, and plug it in an application that

could read the images and pass the data to this class. Some of these faces from the dataset are shown in

Figure 3.

The HOG class depends on ML algorithms that are used to train and predict the data. In the previous

section the ML algorithms were implemented in Weka. One of the objectives of the experiments was to test

if the ML algorithms implemented by OpenCV would have any influence on the recognition results.

The main problem is that OpenCV’s algorithms have some important limitations. For example, Boosting

and SVM algorithms only deal with binary classification problems, which make it diffucult to use these

algorithms with multiple subjects in the database. Despite the fact that initial simulations presented in

previous section were done with binary configuration, the large-scale evaluation was conducted considering

that a single database with all subjects images was created and the ML algorithms should create a final

model for the whole data set. This is a important change in configuration, because in real life situations,
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Figure 3: Facial images from the ORL database.

there will be a database with all faces that the algorithm must decide on. Due to these limitations, it was

decided to use the algorithms implemented in Weka.

The Java Native Interface (JNI) had to be used to allow C++ classes to access Java classes, since Weka

is implemented in Java. The use of Weka library requries more time to train the ML algorithms, because

it reuires that all algorithms are retrained every time the program is restarted. In contrast, OpenCV’s algo-

rithms can save the model, and reuse them when the program is restarted. Another difference is related to

the number of instances that can be used to train. Because Weka requires the Java Virtual Machine (JVM)

to be started, it requires more memory to process all the information.

Tests were performed by selecting one face of the ten faces for each subject to be used as test data. This

process emulates the 10-fold cross-validation used in previous session. This test was repeated twice for each

subject in the database: the first time the last image on the list was used for testing, and the second time the

first image was selected to test. This test procedure was also used on the algorithms originally implemented

in OpenCV, such as: Fisherfaces [2], Eigenfaces [19] and Local Binary Patterns Histograms (LBPH) [1].

Images were not pre-processed and faces were left as is: neither localized, nor aligned. This was necessary,

because the algorithms, which were used to detect faces (such as those implementing Haar cascades [20])

missed various faces of ORL database, making it impossible to evaluate certain faces.

Figure 4 presents the accuracy comparison of the algorithms. Accuracy is the measure of how many

times a ML algorithm correctly classifies each image. As mentioned, the tests were done by removing the

first and last face for each subject and making the algorithms learn from the remaining pictures. In total, for

each training phase the algorithms were presented with nine pictures and one was used for testing.

Fisherfaces, Eigenfaces and LBPH are based on distance metric, where they calculate a distance be-

tween the faces in the database and the new face presented for testing. HOG features use the Bayesian
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Figure 4: Graph presents the performance comparison among different algorithms implemented in OpenCV

(Fisherfaces, Eigenfaces and LBPH)- all use distance metrics to recognize a face. HOG features are the only

algorithm implemented that uses a ML algorithm (Bayesian Network) to perform face recognition.

Network ML algorithm to learn and predict. Distance metrics algorithms showed a variation during testing,

especially when the tests removed the first faces of the subjects. These faces were usually frontal pictures.

HOG features with Bayesian Network did not suffer from this problem and kept almost the same perfor-

mance in both cases. The best algorithm was LBPH, which recognized all faces in the case of the last face

in the list, but reduced its performance when it was requested to recognize the first face (92% accuracy).

HOG features with Bayesian Network had better results than all algorithms when classifying the first face

(94%), but it had worse performance than all algorithms to classify the last image (92%).

Another important observation is related to the use of Bayesian Network as an ML algorithm, instead

of the Random Forest used in previous topic. The main reason is that the database is composed with data

from all faces, and Random Forest was not able to perform well with this configuration.

5 Conclusions

This work presented an evaluation of facial feature extraction algorithms for face recognition on video using

several a traditional machine learning algorithms implemented in OpenCV. The evaluated feature extraction

algorithms included Harris, FAST, GFTT, MSER and HOG. Among those, HOG showed the best perfor-
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mance on a small scale dataset and was chosen for further testing on a larger scale dataset using different ML

algorithms. The evaluation was executed with cross-validation, because its theoretical background ensures

that the results are representative of what independent test sets would yield [21].

The obtained results showed that open source face recognition codes, such as those available in OpenCV

library, can be sufficient for building FRiV systems that work in the Type 1 video surveillance scenarios

(i.e. person at the kiosk), provided that a good quality face picture is captured.

As future work, the techniques for automated face alignment, e.g. such as presented in report [17],

should be investigated for further improvement of the face recognition performance in video. Additionally,

techniques for pre-processing of images captured in poor lighting should be examined, for example such as

those described in [15], which appear promising for video surveillance applications
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